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ABSTRACT

In recent years, artificial intelligence has become increasingly popular and its suc-

cessful application countless, thanks to neural networks. However, most deep learning

algorithms rely on huge quantities of data to produce satisfactory results. In scenarios

in which plenty of high quality datasets are not available, modern models struggle

to achieve human-like performance. An example of such situation is Emotion Recog-

nition, a task for which there exists numerous datasets that, however, are designed

following different categorical models and, as a consequence, are not easily comparable

and usable together. In order to overcome this issue, I propose Multi-Type Contin-

uous Disentanglement Variational AutoEncoder, an architecture that combines the

versatility of unsupervised learning with the straightforwardness of supervised learn-

ing. The developed model is able to understand and represent the dimensional latent

space underlying each categorical model and, therefore, to project each categorically

annotated data-point into a shared continuous space. Thus, the model learns to en-

code each input into a disentangled embedded representation, storing the continuous

real factors that generated it.

By proposing a tool to disentangle categorical annotation into their true dimen-

sional components, I hope to provide an insight on how to link classification and

regression task, two important elements of machine learning.
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1 | Introduction

In the last decade computer science has experienced an exponential development, be-

coming part of everyone’s daily life. The revolution, that modern artificial intelligence

caused, can’t be ignored; the shift in paradigm from statistical hand-crafted methods

to more general purpose machine learning (ML) algorithms, especially thanks to

neural networks, represents a milestone in current society’s history. As a branch

of AI, Natural Language Processing has also undergone drastic changes that have led

to an incredibly fast progress. The shift from probabilistic/statistical models to neural

networks and the use of increasingly sophisticated architectures has made it possible to

obtain incredible performances. Nowadays, the state-of-the-art algorithms generally

involve an adaptation of a sequence-to-sequence system to the given problem: pre-

trained Transformer based models such as BERT [8] or GPT-2 [27] are fine tuned

for a specific task and, through their, pre-learned knowledge are able to adapt to

the new context with ease. Although challenges such as machine translation or text

summarization can, therefore, be considered solved, it is still very difficult to explain

what happens behind the surface: all these advanced systems are mainly end-to-

end, behaving as black boxes. This undermines the explainability of these processes

and, consequently, their scalability and applicability to exotic environments, such

as multi-modal ones, or to more elaborate tasks such as emotion recognition, where

the availability of training data is not sufficient to obtain perfect models, given the

subjectivity of the task.
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Modern architectures work by generating word and sentence embeddings: vectors

able to store a compressed but useful representation of each utterance’s content and

characteristics. Although it is possible to capture intermediate embeddings by em-

ploying architectures such as auto-encoders, it is difficult, if not impossible, to perform

an analysis and manipulation on them at a symbolic level to understand their actual

meaning. This undermines the possibility of expanding and adapting the model to

novel applications, as costly retraining is always required. This is particularly true as

architectures get more and more complex; for simpler scenarios, such as when using

Word2vec to generate word embeddings, such symbolic operations between elements

are still possible and useful, albeit limited [21] [22]. Therefore, it is fundamental to

have an insight into the functioning of the different blocks that make up a network

and how they cooperate, both to guarantee the explainability of internal processes

and to be able to divide architectures into reusable and modular units, in order to

obtain scalable systems. Reaching a greater possibility of analysis and, consequently,

a greater trust in artificial intelligence is an objective considered very important even

outside the scientific community, having an immense repercussion in socio-economic

areas.

Explainability of neural networks (i.e. understanding in a qualitative and quan-

titative way what each layer is learning to represent and what kind of operations it

performs) can be achieved in different ways. A concept that has become very popular

in recent years is disentanglement, referred to as the ability to obtain embeddings

in which each encoding factor represents an independent feature of the data and,

therefore, can be analyzed with ease (Fig. 1.1). Disentanglement, however, is still an

active research field and numerous papers are continuously published, demonstrating

new techniques to be applied to new data formats (e.g. images or text) and with dif-

ferent objectives (e.g. unsupervised disentanglement, where the model has to find the

factors to be disentangled, versus targeted disentanglement, where the model needs to
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Figure 1.1: Example of image embedded into a disentangled representation. Picture
taken from the UoY 3D face dataset [11].

disentangled specific target features). To the best of my knowledge, however, nobody

has yet tried to apply disentanglement to cover the gap between categorical and con-

tinuous data, bridging two pillars of machine learning: classification and regression.

Within this work, I suggest a first attempt to achieve so, by providing an architecture

able to disentangle categorical labels into the generative real values behind them,

allowing, defacto, the projection of each category in a geometrical latent space, en-

abling all the analysis tools typical of those spaces, and, in particular the possibility

of merging different categorical models into a single dataset. With this contribution,

I hope to inspire novel ways to achieve explainability within neural networks.

1.1 Contributions

This project has been carried on completely independently by myself. Based on

existing knowledge and architectures, new insights and methods are provided to im-

prove explainability inside neural networks. In particular, a way to solve some of the
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difficulties present in Emotion Recognition in textual data is developed. The main

contributions can be listed as following:

• Detailed overview of what Emotion Recognition (in Conversation) is and of

its possible problem settings. Some of the difficulties that arise when working

with it are highlighted. In particular, I describe the data sparsity problem and

suggest a way to deal with it;

• Analysis of existing methods used, or usable, to solve the problem, but fail

because of specific pitfalls;

• Suggestion and development of a new architecture capable of providing a solu-

tion to it. Experimental results are provided to show the feasibility of the task,

and how the method can be applied to more general scenarios;

• Development of further techniques that define a general-purpose framework to

disentangle categorical models into their continuous factors, allowing for a better

model’s explainability.

4



1.2 Thesis overview

This work is divided into four main chapters:

• Chapter 2 describes the general background in which this work was developed.

The ideas that inspired the project are illustrated, providing the reader with the

key concepts that allow to understand the problem statement. Furthermore, an

in-depth overview of already existing methods that try (or can be used) to solve

it is presented. Special attention is given to the Emotion Recognition task, the

different autoencoder architectures and the concept of disentanglement.

• Chapter 3 illustrates the datasets and architectures used to obtain the results.

In particular, it highlights the contributions made to existing models to solve

their issues and enable new capabilities.

• Chapter 4 shows how it is possible to use the developed architecture, Multi-

Type Continuous Disentanglement Variational AutoEncoder (MTCD-VAE), to

project categorical labels into a continuous latent space. This shows the feasi-

bility of discovering the generative factors behind each category and, therefore,

provides a way of merging different models together.

• Chapter 5, finally, contains further results that were not initially foreseen and

shifted this thesis towards a more theoretical target, analyzing disentanglement

from a general perspective, instead of focusing on Emotion Recognition. In this

way, I hope to provide a general purpose framework that can be used to reach

better explainability inside neural networks.
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2 | Background and problem settings

2.1 The importance of data

Modern artificial intelligence has undergone drastic changes that have led to an ex-

ponential development. The key element behind its success, both theoretical (provid-

ing excellent experimental performance) and practical (being easily scalable to large

commercial applications), is the versatility of neural networks, as they don’t require

expensive domain expertise to solve a specific problem and can be freely applied to a

wide variety of tasks. Instead, they rely on huge quantities of data to autonomously

learn the expert knowledge that, in a more canonical scenario, a human would have

had to encode inside the model.

Although there have been important developments in both unsupervised (e.g.

Transformer-based architectures able to embed a large amount of information through

an initial unsupervised training phase [8]) and reinforcement learning (e.g. Google

DeepMind’s Alpha Go and its ability to take down the Go world champion with

ease [31]) in the last years, the majority of applications and industries still mostly

utilize supervised learning to produce real-world tools and fine-tune them to specific

downstream tasks. It does not come as a surprise, therefore, that the performance

and quality of the results obtained by a model is directly linked to the amount of

high-quality data available during the training phase. A clear example of this phe-

nomenon can be seen in machine translation: state-of-the-art models are nowadays
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considered almost indistinguishable from human-performed translation and can even

outperform it in specific tasks and metrics [25]. However, these results only apply in

scenarios where both source and target languages have a large text corpora available;

with low-resources languages, all the methods are far from reaching the same level of

performance [1]. In particular, it has been observed by Koehn [16] that, compared to

traditional statistical machine translation, neural machine translation "have a steeper

learning curve with respect to the amount of training data, resulting in worse quality

in low-resource settings, but better performance in high-resource setting" .

2.1.1 Neural networks

Neural networks are architectures based on a series of connected units, called neurons,

that are organised in layers. Each neuron performs the following basic operation:

given a input vector x and a sub-differentiable activation function f , the neuron

computes

y = f(w · x+ b) (2.1)

where w and b are internal parameters of each neuron, called weight and bias, and

can be learned during training. Neural networks are basically multi-dimensional dif-

ferentiable functions that, given an input x, adapt to produce the desired result y.

Equation 2.1 is the basis of the feedforward operation: x is processed sequentially

by each layer and eventually the response y is output. Formally, a standard fully-

connected neural network can be described as following. Be D the number of layers

composing the model, each one consisting of Nl neurons, where N0 = d is the dimen-

sion of the input and ND−1 the one of the output. Each layer is associated with a

matrix Wl and a vector bl, that store the values for each individual neuron’s weight
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and bias. The feedforward dynamics is, therefore, given by:

xl = f l(hl), hl = W l · xl−1 + bl, l ∈ 1, 2, ..., D − 2 (2.2)

y = fD−1(hD−1), hD−1 = WD−1 · xD−2 + bD−1 (2.3)

Given the output y and a target value ŷ, an "error" value, representing the perfor-

mance of the neural network, can be computed using a so-called loss function:

l = loss(y, ŷ) (2.4)

By computing the gradient of l with respect of eachWl and bl, it is possible to update

their values (e.g. by taking a fixed-length step in the opposite direction given by the

gradient), eventually reaching a local minimum for the loss function, thus trying to

minimize the model’s predictive error and maximizing the similarity between y and

ŷ. This step is called error back-propagation and allows neural networks to learn

autonomously. In theory, after a training phase performed over a set of samples

{(x0, ŷ0), (x1, ŷ1), ...}, the model should be able to generalize over unseen data.

2.1.2 Different types of learning

As described above, neural networks and, more in general, machine learning algo-

rithms are able to learn to mimic complex high-dimensional functions. In order to

achieve that, however, a loss function and a target value for each training datapoint

are generally required. How these are specified determines the typology of learning

problem we are trying to solve. We can identify three main categories:

• Supervised learning: a supervised model requires both a loss function and

a target value ŷ for each training sample and is able to construct a mono-

directional mapping between two spaces (e.g. from pictures ∈ Rw·h to labels

9



of objects). Given an unseen new input it will produce a predicted output.

Classification and regression problems are both examples of supervised learning

problems;

• Unsupervised learning: compared to supervised learning, unsupervised mod-

els do not require an external target ŷ, but can instead compute the loss function

only by using the input x and the generated output y. The main advantage is

that they do not need costly annotated data to be trained or perform. Examples

are clustering algorithms or autoencoders;

• Reinforcement learning: algorithms of this category are based on an agent

that is able to interact with a real or simulated environment. The inputs consist

of the sensory data it can query and outputs are determined by the actions it

performs. Although no prior data collection is necessary, the training process

is generally slower and costly (because of the hardware or complex simulations

required).

With the exception of reinforcement learning, a method that, despite its huge po-

tentiality, is still in its infancy due to its limited applicability in real-world domains,

both supervised and unsupervised learning requires a lot of training data to produce

satisfactory results. Therefore, as mentioned earlier, the availability of many high-

quality datasets is of fundamental importance. Combining the two approaches, in

what is called semi-supervised learning, has proven very successful in the last years.

The method proposed can be considered to belong to this category.

2.2 Emotion Recognition in Conversation

A field in which the lack of sufficient availability of high-quality data is quite evident

is Emotion Recognition (ER) and, especially, Emotion Recognition in Conversation
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(ERC). As it can be evicted from the name, these natural language processing (NLP)

tasks consist in the ability to mine underlying opinions and emotions of a text corpora.

Due to the huge amount of comments, discussions, and controversial expressions

publicly available on platforms, such as Reddit or Facebook, it is considered by the

scientific community an important step in producing autonomous agents, able to

fully understand the meaning of a sentence and to reply generating an emotion-

aware dialogue. However, it still consists a very difficult problem, and state-of-the-

art algorithm are nowhere close to human like performance. ERC, especially, is

considered a real challenge, as, compared to vanilla emotion recognition, it requires

context modelling and keeping track of the current state of the conversation. In order

to fully understand a dialogue, in fact, emotion understanding is essential, as emotions

can deeply change the meaning of an utterance: an angry "fine" is completely different

from an happy one, and sarcasm can significantly twist what an interlocutor is trying

to convey. On the other hand, it is the dialogue and the context itself to change

the feelings of the people involved. This intricate emotion-context relationship makes

ERC an incredibly complex task.

As stated before by Koehn [16] and as generally experienced in any ML setting,

using more data during training is generally the safest bet to overall increase per-

formance, as it allows to construct more complex models and gives them the ability

to efficaciously generalize the knowledge learned, as the more information is avail-

able, the less prone the model is to overfitting. However, due to the nature of the

task itself, it is difficult to produce high-quality reusable datasets. For this reason,

semi-supervised learning has recently been proven very effective in improving the per-

formance in ERC down-stream tasks, thanks to a technique called transfer-learning

[10]. In Poria et al. [26] the main challenges linked to producing ERC datasets and

a description on available ones are reported: as emotions are an incredibly subjective

topic, it is hard to define an agreed-upon standard on how to generate generally useful
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EmoContext IEMOCAP Emotionlines DailyDialog
Neutral x x x

Happiness x x x x
Sadness x x x x
Anger x x x x

Frustrated x
Excited x
Disgust x x
Fear x x

Surprise x x
Other x

Table 2.1: Emotion taxonomies used by different datasets.

labelled data. In particular, the trade-off between dataset completeness and accuracy

needs to be mentioned, as complex emotion models increase the risk of obtaining a

lower inter-annotator agreement during the labelling phase, due to the subjectivity

of the task.

2.2.1 Categorical and dimensional models

The majority of ERC datasets (e.g IEMOCAP [4], Emotionlines [6], DailyDialog [18],

and EmoContext [5]) consist of collections of utterances and categorical emotional

labels associated to them, where categorical means assigning, to each data sample,

one (or more) label chosen from a fixed discrete set of categories. In the last century,

many emotional taxonomies have been proposed and, consequently, different datasets

use different systems, trying to specifically address the task they were designed for.

EmoContext, for example, subdivides emotions in four categories (i.e. Happiness,

Sadness, Anger, Other), IEMOCAP uses six of them (i.e. Neutral, Happiness, Sad-

ness, Anger, Frustrated, Excited), while Emotionlines and DailyDialog rely on the

scheme proposed by Ekam [9] (Table 2.2.1).

On the other hand, there exist dimensional models that offer a multi-dimensional

space in which each sentence can be uniquely represented by a vector of real num-
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bers, according to its emotional nuances. Each axis, therefore, stores an independent

hidden factor that determines some of the sentence’s characteristics, enabling the

mapping between emotions and a continuous spectrum of values, avoiding hard (and

limiting) categories. A commonly used model is the Valence, Arousal, and Dominance

(VA+D) one, proposed by Russel [29]). The key feature of dimensional models is the

possibility to easily compare emotional states using vector operations, and, therefore,

to relate different datasets by projecting all the utterances in the same geometrical

space. To some extent, it is relatively easy to merge multiple dimensional datasets

into a standard format. The main drawback of such approach is that it is challenging

to initially assign the correct values to each emotion, as annotators would struggle

to reach an agreement, given the continuous range of possibilities. To the present

date, only a couple of relevant dimensional datasets are available: SEMAINE [20]

and EmoBank [3], both relying on slight modifications of the Valence and Arousal

framework.

Compared to dimensional models, categorical datasets are, therefore, easier to

generate, as the labelling process is easier and annotators can rely on self-introspection

to identify the precise emotion that an utterance provokes in them (compared to

assigning a set or real numbers based on some ideal scales). However, categorical

datasets are difficult to work with, as comparison between models is not trivial,

since there is not an explicit relation between multiple labelling systems, nor between

the categories used in each single dataset. Therefore, given a specific task, it is

difficult to merge different data sources to obtain a larger shared training corpus

and, consequently, ERC suffers of a severe data sparsity problem. The methods

suggested in this work try to address the issue, proposing a general framework to

relate categorical models across datasets, projecting them in the same geometrical

continuous space, offering the advantages of both worlds (i.e., simplicity of use of
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categorical information and possibility to combine multiple sources through their

dimensional representation).

2.3 Using multiple datasets

Merging two datasets involves understanding how the different labels are related

to each other, in order to correctly create a new categorical model to be used in

the produced merged dataset. However, categorical data, compared to dimensional,

do not contain any information that can help in that regards. Although from a

human perspective it is clear that, for example, happiness and sadness are opposites

while excitement and surprise may share multiple nuances, it is not obvious how

this similarity metric can be formalized and, therefore, how to understand the true

meaning of each label. Formally, each category is a unique identifier that groups

together several items, without providing any data on which features they have in

common and what, instead, distinguish them from other sets. It seems, therefore,

a natural step to try to convert a categorical model to a dimensional one, in order

to unlock all the vector operations and properties of a geometrical space that would

enable the creation of precise distance metrics. With these new tools, it becomes easier

to understand the relationship between different labels by comparing the distributions

of utterances and their emotions, once projected in the new space. We aim, therefore,

to solve a regression problem (i.e., predicting the value for each independent factor

generating a sentence) by means of using exclusively categorically labeled training

data, normally designed for classification models.

2.3.1 Classification and regression

Classification and regression are both supervised learning tasks that aim to learn a

mapping function from an input space X to an output space Y . The main difference
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of the two methods is the typology of the target space Y .

• Classification: Y is a set of predefined discrete classes that does not posses

any order or distance properties. A model Mc learns to predict the labels’

distributions given an input xi, i.e. p(l|xi), by means of a loss function that

maximize the probability of belonging to the right class, increasing the overall

model’s classification accuracy. Due to the nature of the space, the model is

not able to represent any meaningful relationship existing between the different

categories.

• Regression: Y is a continuous space (generally a subset of Rn) on which pre-

cise notions of order and distance are defined. A model Ml is able to learn

a continuous mapping between X and Y , usually by minimizing the distance

between the output produced by each training sample and its true associated

value v. Ml, by learning the distributions p(v|xi), is also able to represent

the relationships between multiple data points, given by the space’s proper-

ties. Comparison between values is, therefore, easier and more insights can be

obtained from the data.

The two tasks seem incompatible. Assume, however, that the features characterizing

each element x are uniquely determined by a set of underlying continuous generative

factors v = (v1, v2, ..., vk), such that, given the true world simulator Sim, p(x|v) =

Sim(v). Since the categories used in a classification problem are obtained by grouping

together elements that appear similar (e.g., by labelling them with the same value),

then it is true that each group can be defined through a subset of the generative

factors’ values. Therefore, a regression problem can be transformed to a classification

one by applying a clustering algorithm on the space Y . Unfortunately, inverting the

process (i.e., disentangling each label’s value into its generating factors) is not trivial,

due to the loss of information that occurs when merging multiple continuous values
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Figure 2.1: Reduction between classification and regression problems.

into a single category (Fig. 2.1). It would allow, however, to reduce one problem to

the other and vice versa, exploiting advantages of both.

2.3.2 Problem statement

The techniques developed within this work can be applied to any domain, but,

throughout this report, the ERC task will be used to explain the significance of

the obtained results and how they can be applied on a practical problem.

Consider N datasets D1, D2, ..., DN , each containing a set of Si training sam-

ple points, Di = {(x̂1
i , ŷ

1
i ), (x̂

2
i , ŷ

2
i ), ..., (x̂

Si
i , ŷ

Si
i )}, which refers to the same data do-

main, but is labelled according to a different categorical model of size Ci: ŷi ∈ Li =

{l̂1i , l̂2i , ..., l̂
Ci
i }. The goal is to generate a merged dataset D =

⋃
i∈{1,...,N}Di such that

each data point (x, y) ∈ D is consistent with its original categorical system. Consis-

tency here means that, if we assume that there is a set of true independent generative

factors (v1, v2, ..., vk) = v ∈ Rk such that they uniquely determine how each utterance

is labelled according to L =
⋃
i∈{1,...,N} Li (i.e., they define a probability distribution

over L such that ∀l ∈ L, p(l) =
∫
p(l|v) dv), then the following equations must hold:

∀(x, y) ∈ Di, pLi(v|x̂, y) ≈ pL(v|x̂, y), ∀i ∈ {1, ..., N} (2.5)
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∀l̂ ∈ Li, ∃!l ∈ L : pLi(v|l̂) ≈ pL(v|l), ∀i ∈ {1, ..., N} (2.6)

where pM stands for the probability distribution computed accordingly to the model

M . In particular, given a sample (x, y) ∈ D, y ∈ L, we aim to compute

pL(y|x) =

∫
V

pL(y,v|x) dv =

∫
V

pL(y|v,x) · pL(v|x) dv =

=

∫
V

pL(y|v) · pL(v|x) dv

where the last equation is justified by our initial assumption and V is the k−dimensional

vector space defined over v1, v2, ..., vk. This implies, for example, that

∀v ∈ V, p(l̂hi |v) ≈ p(l̂kj |v) =⇒ ∀x, p(l̂hi |x) ≈ p(l̂kj |x) (2.7)

Equation 2.7 states that, if two labels l̂hi and l̂kj refer to the same category of data

(i.e.e, they are generated by the same factors v, despite being referred as different

entities in Li and Lj), we should be able to conclude that l̂hi = l̂kj , since, from the

data, it would be impossible to distinguish them. Analogously, if two categories share

similar generative factors, they should be mapped to similar distributions in V .

As mentioned earlier, working with a dimensional model has many advantages

compared to a categorical approach and, therefore, it would be ideal to focus on

and to compute the probability distribution p(v|x), given access to D1, D2, ..., DN .

However, the structure of V itself is unknown. In other words, to construct each

vector v, we need to discover how many dimensions are necessary and sufficient to

fully represent L and how the different labels map to different subsets of the chosen

vector space. Therefore, we aim at determine the number of true generative factors,

k, and to learn, given a sample (x, y), y ∈ L, the following probability distributions:

p(v1, v2, ..., vk|x, y) (2.8)
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and, ideally,

p(v1, v2, ..., vk|x) (2.9)

p(v1, v2, ..., vk|y) (2.10)

By knowing distribution 2.9, we are able to compute v without the need of categorical

annotation and, therefore, we can enrich our dataset D with new unseen data points.

Distribution 2.10, instead, represents a direct mapping from the initial distinct cate-

gorical models to the same shared continuous space, allowing the creation of a single

combined dataset.

Furthermore, if a labelling system is actually necessary for a particular task, a

clustering algorithm can be used to determine L, by considering the data points

projections x̄ in the space V , obtained by considering the maximum likelihood ap-

proximation

x̄i = arg max
v

p(v|xi) (2.11)

and a simple classification network can then be trained to learn the mapping from V

to L.

2.3.3 Merging emotions

Russel [29] theorized that any emotion is uniquely determined by three independent

factors: Valence, Aruousal, and Dominance. Therefore, in theory, it should be pos-

sible to project all the emotion labels showed in Table 2.2.1 to a three dimensional

space, computing their position along each axis. Although, through practical psy-

chological experiments it is possible to estimate rough boundaries for every value,

each person has a different emotional perception and, across different annotators, the

predicted positions may be insufficiently precise or, in the extreme case, not correct.

The flexibility that deep learning posses could be a key element to construct a model
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able to adjust to any combination of datasets, by autonomously learning the distri-

butions of the true generative factors v linked to each emotion label. This would

represent the shift from statistical methods, which require pre-existing knowledge, to

neural networks, which has already proven so beneficial in many tasks (e.g., machine

translation and image recognition). The challenges that a model would need to solve

are many:

• Understanding which labels across multiple datasets refer to the same (or sim-

ilar) emotional values and correctly merge them in a unique category (e.g., Joy

and Happiness, generally considered synonyms);

• Vice versa, critically evaluate if the same label is used consistently to classify

similar utterances, as, due to the subjectivity of the annotation task, each emo-

tion could be considered having different nuances by different people in different

settings;

• Correctly understand the relationships between categories, in order to represent

those utterances that do not clearly belong to a specific group but, instead,

share features with different emotional values. We can, in fact, exploit the full

potentiality of a continuous space, by projecting ambiguous sentences in the

space between different clusters, interpolating their position based on their true

generative values;

• Verify that the VAD dimensional model (i.e. R3) is sufficient and necessary to

represent emotions.

With these properties satisfied, any categorical dataset could be projected in the same

space, allowing to solve the data sparsity problem that affects ERC. Furthermore, by

extrapolating v from a given x, it would be possible to obtain more insights on its

properties, than just relaying on its discrete classification.
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2.4 Existing Approaches

There are different approaches described in literature that can be adapted to solve

the above-mentioned task. Firstly, we focus on a supervised model introduced in

2019 by Park et al. [24], targeting specifically Emotion Recognition, to describe

what needs to be improved to deal with the new problem settings. Secondly, we

provide an overview on a well-known unsupervised architecture used to extract latent

representations from the provided data, i.e., autoencoders, as the developed solution

is based on an augmented version of it.

2.4.1 Toward Dimensional Emotion Detection from Categori-

cal Emotion Annotations

A first attempt towards dimensional emotion detection from categorical annotation

has been proposed by Park et al. [24]. As they state, the model developed in the

paper is able to predict fine-grained emotional values, requiring only coarse-grained

categorical labels during the training phase. In particular, they rely on the VAD

framework and on the NRC-VAD Lexicon [23], in order to project each category into

a continuous space, V = (v, a, d) (Fig 2.2). Their approach consists in computing

the distribution p(v, a, d|x) ≈ p(v|x) · p(a|x) · p(d|x) for each utterance x and by

predicting its continuous VAD score as expectation of each distribution:

vscore = E[p(v|x)]

ascore = E[p(a|x)]

dscore = E[p(d|x)]

In order to approximate p(·|x), they consider the ordered sequence of labels along

each axis, according to the NRC-VAD Lexicon’s values and, successively, they mini-
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Figure 2.2: Emotion labels projected into the VAE space.

mize the distance between the true distribution p̂(·|x), obtained from the data, and

predicted one, p(·|x). For example, in the categorical model C = {joy, sad, happy, anger},

the four emotions, whose Valence values are, respectively, (0.980, 0.225, 1.0000, 0.167),

will be sorted on the v axis as (anger, sad, joy, happy). The chosen order is of fun-

damental importance when trying to predict intermediate emotional states. If we

restrict the example above to a one dimensional scenario, e = (v), representing a

value between sad and joy would be natural. However, it would be hard to in-

terpolate exclusively between anger and happy, without recurring to a multi-modal

distribution, which would be hard to approximate with a point estimate (e.g., by

using a maximum likelihood approach). Furthermore, the loss function used by Park

to train the model is the Earth Movers Distance (EMD) [14], designed to give more

penalties when a class far from the correct one is predicted:

EMD(p, p̂) =
C∑
i=1

(CDFi(p)− CDFi(p̂))2 (2.12)
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where CDF is the cumulative distribution function. The performance of a model

trained with this loss function is, therefore, susceptible to the emotion labels’ cho-

sen order and displacement among each axis. Thus, the usage of a priori knowledge

may result in inaccuracies, requires domain-specific data to be collected, and prevents

the direct applicability of the developed method to other problem settings. In ERC,

in particular, it is not considering the subjectivity of the annotation task that, by

its nature, can’t rely on fixed values, as each dataset will present slightly different

emotion distributions. In addition, there is no clear evaluation metric that can help

in understanding the correctness of the initial choice and how it is influencing the

observed performance. Therefore, a solution able to learn and modify its core param-

eters would be preferable. Given the success obtained by deep neural networks, they

seem a natural and immediate choice.

2.4.2 Autoencoders: an example of unsupervised learning

Autoencoders were introduced in the 1980s by Hinton [28] as a tool to "learn without

a teacher", by using exclusively the input data to compute and backpropagate the

loss of the network. Recently, thanks to the advances in deep learning, they have

become extremely popular. Modern models consist of three main components: an

encoder, a decoder, and an intermediate information bottleneck (Fig. 2.3). The goal

of the architecture is to learn, in an unsupervised fashion, compact and simplified

representations, generally called embeddings, of the given sample data, capable of

representing their key characteristics. Both encoder and decoder are multi-layer neu-

ral networks that are trained to learn the mapping between the high-dimensional data

domain and the low-dimensional embeddings’ latent space. The intermediate bottle-

neck between the two guarantees that the representation learned is efficient and stores

only essential information.

The architecture is firstly trained bottom-up, by learning a task-agnostic internal
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Figure 2.3: Basic autoencoder architecture.

representation, and then fine-tuned on a specific downstream task, generally by sub-

stituting the decoder with a supervised classification (or regression) network. The

knowledge embedded into the model through the initial step helps obtaining state-of-

the-art performance in many tasks. Formally, an autoencoder is defined by the tuple

(D,X,H, n, h,A,B,∆), where:

• D is the training dataset, composed by the data points {x1,x2, ...,xm}, with

xi ∈ X;

• X and H are sets (e.g., R,N, ...);

• n and h, h < n are integers, representing the size of the input data space, Xn,

and latent space, Hh;

• A is a class of functions from Xn to Hh;

• B is a class of functions from Hh to Nn;

• ∆ is a dissimilarity function defined over Xn.

Then, given a sample xi, the following operations are performed:

1. Encoding: hi = A(xi), with A ∈ A is the function represented by the encoder;
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2. Decoding: x̂i = B(hi), with B ∈ B is the function represented by the decoder;

3. Error backpropagation: l = ∆(xi, x̂i) is backpropagated through the net-

work.

Therefore, the goal of the architecture is to find A ∈ A and B ∈ B that minimize the

overall dissimilarity loss

L = min
A,B

m∑
i=1

∆(B ◦ A(xi),xi) (2.13)

and consequently, build the most informative latent representation hi. Since we are

interested in identifying the true generative factors v of a given sample x, analysing

h could provide useful insight.

Autoencoders are deterministic networks: for each input point, the encoder is

producing a single value for each encoding dimension. Therefore, they treat each

sample individually and may fail to learn the relationships between different points

and their features, overfitting to the training data. As the interest of this research is

towards interpolations between several categorical labels, it must be avoided. Instead,

a continuous and meaningful representation of the input data in the latent space

should be preferred.

2.4.3 Variational Autoencoders (VAE)

Variational Autoencoders are an improvement over traditional autoencoders proposed

by Kigma and Welling [15]. Instead of employing an encoder that generates a sin-

gle value per latent dimension, they provide a probabilistic manner for describing an

observation in the latent space, by outputting a statistical distribution over the dif-

ferent possibilities. A single number (for each latent unit) is then randomly sampled

from its distribution and fed into the decoder. Therefore, instead of learning a single

mapping for each datapoint, the model is able to predict the correct output from a
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range of values. This implies that, in order to maintain reasonable performances, we

are enforcing a continuous latent representation, as values which are nearby to one

another in the space must correspond with very similar reconstructions. By means of

this new smoothness assumption, it is guaranteed that utterances whose emotional

values are intermediate between main categories, will be correctly projected close to

them, by interpolating their final position.

Formally, we would like to predict we value of h given an observation x, p(h|x).

By Bayes’ rule we have:

p(h|x) =
p(x|h) · p(h)

p(x)
(2.14)

Unfortunately, in most cases, getting p(x) requires computing an high-dimensional

integral

p(x) =

∫
p(x|h) · p(h dh) (2.15)

which is intractable. Instead, we try to approximate, in a variational manner, the

posterior p(h|x) through a family of distributions qθ(h|x), where θ represents the

encoder’s parameters. Furthermore, to reconstruct the input from the latent, the

decoder computes the likelihood function pφ(x|h), where φ are the decoder’s param-

eters. In order to learn θ and φ, the model uses a double-objective loss function:

1. Maximize the reconstruction similarity, by maximizing the expected value

over h ∼ qθ(h|x) of the log likelihood:

lrec = Eh∼qθ [log(pφ(x|h))] (2.16)

2. Minimize the prior approximation error, by minimizing the KL divergence

[17] between the prior p and qθ(h|x):

lKL = DKL(qθ(h|x)||p(h)) (2.17)
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Together, equations 2.16 and 2.17, define the ELBO (Evidence Lower BOund) func-

tion:

ELBO = lrec − lKL (2.18)

As shown in Appendix A, maximising the ELBO loss function, corresponds to min-

imizing the KL divergence between the true posterior p(h|x) and the approximation

qθ(h|x), DKL(qθ(h|x)||p(h|x)). The choice of the prior distribution p(h) deeply in-

fluences the model behaviour. Firstly, setting it to be the isotropic unit Gaussian,

N (0, I), allows for an analytical form of the KL divergence:

lKL =
∑
j

1

2
(1 + log(σθ)

2
j − (σθ)

2
j − (µθ)

2
j) (2.19)

where µθ and Σθ (diagonal matrix whose non-zero elements are σθ) are the output of

the encoding operation and represent qθ(h|x); j indexes the latent space dimensions.

Secondly, by using a diagonal co-variance matrix, we force the embedding’s units to

be independent from each other, minimizing the mutual information and, therefore,

maximizing the efficiency of the latent representation. Since, in order to understand

the meaning of each categorical label, we are interested in identifying its true gener-

ative factors v, it may be helpful to obtain such representation, as each unit could

be analyzed independently to get useful insights on them. Furthermore, by forcing

a smooth transition between classes (i.e., there are no "unused holes" in the space),

the whole latent space nicely represents different projections of realistic objects and

can be used to generate new data. The decoder, in fact, can be used as a generative

network that, given a random vector h, can reconstruct the original corresponding x.

There remains only one issue to be solved: by having an intermediate sampling

operation, we are breaking the continuity of the model and, therefore, the possibility

to compute the encoder’s gradient (i.e., the sampling operation is not differentiable).

The solution is what it is called reparametrization trick. Instead of directly using
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Figure 2.4: Reparametrization trick.

N (µθ,Σθ), we sample some noise ε = N (0, I), shift it by µθ and scale it accordingly

to σθ (Fig. 2.4). In this way, we are able to backpropagate the error across the

network, as the randomness is kept outside the model.

2.4.4 Disentanglement: β-VAE

The idea of isolating the ground truth factors v generating a sample x is widely stud-

ied in literature. Disentanglement refers to the independence among features in the

embeddings that allows for an easier interpretation and analysis or, in other words,

that the dimensions characterising the latent space encode different features of the

data. It is considered a key element for explainability inside neural networks, as one

can easily observe and understand the transformations and, therefore, the underlying

processes that each input sample undergoes through each cluster of layers. In the

ERC setting, any utterance’s emotion is assumed to be generated by the Valence,

Arousal, Dominance factors. By describing it through them, instead of a discrete cat-

egory, a perfectly disentangled representation of the sentence, encoding those three

factors in separate latent units, would be obtained (Fig. 2.5). It is the consequent

explainability, then, that would allow for the merging of different datasets, as it is
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Figure 2.5: Ideally disentangled representation of emotional features in an autoen-
coder.

clear what each label actually means. The KL divergence term in the VAE’s loss

function induces disentanglement by forcing the covariance between latent units to

be zero. However, as for any regularization method, balancing its weight is required

in order to obtain a meaningful representation: if we focus entirely on minimizing

the KL divergence, every sample observation would be mapped to the same isotropic

unit Gaussian, encoding little to no information. Instead, when the two terms, i.e.,

reconstruction loss and KL divergence, are optimized simultaneously and balanced

correctly, the model is encouraged to describe the latent state with distributions close

to the prior but deviating when necessary to express salient features of the input.

β-VAE is a slight variation of the VAE architecture, developed by Higgins et al.

[12], that introduce a weight factor, β > 0, into the ELBO loss function, allowing for

a manual balancing between the two terms:

ELBOβ = lrec − β · lKL (2.20)

The authors, additionally, define a dataset, called dSprites [19], to study and establish
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the capabilities of their model. It consists of binary images containing a 2D shape,

chosen among three possibilities (i.e., diamond, heart, and ellipse), randomly posi-

tioned, scaled, and rotated (Fig. 2.6). Comparing the encoded latent values with

these original factors, it is possible to understand the quality of the obtained dis-

entanglement. However, a general and clear definition of disentanglement does not

yet exist, nor a way of measuring it, especially in scenarios where the true factors

v are not known. Higgins suggested their own metric, which has been proven not

to be very stable and improved in following models (e.g., β−TCVAE, which relies

on total correlation and mutual information to measure the disentanglement [7]). In

particular, being autoencoders an unsupervised architecture, it is difficult to under-

stand which factors are encoded in which latent unit. A commonly used method is

performing a traversal for each of the hidden dimensions: by fixing all the latent units

except one and generating, through the decoder, different samples corresponding to

different values across the chosen dimension, it is possible to infer which basic feature

is determined by it (if any at all). However, it is an entirely qualitative method and,

due to its subjectivity, it would be better to utilize it only as a confirmation tool,

rather than relying entirely on it.

In order to overcome this issue, semi-supervised methods, that depend partially on

annotated data, have been developed. Wu et al. [32] proposed a semi-supervised VAE,

SRV-SLSTM, that exploits dimensional labelled data, based on the VAD framework,

to guide the training phase. By adding a regression network that works in parallel

with the encoder, they are able to split the latent vector h in a content component,

c, learnt by the autoencoder, and a style one, s, which is generated by the supervised

network. In this way, the model is manually induced to disentangle the VAD values

from other factors. However, it is not able to incorporate categorical datasets during

the training phase, as it doesn’t employ any classification network. Despite this, it

shows that it is possible to use semi-supervised methods, combining the versatility of
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Figure 2.6: Samples from the dSprites dataset.

autoencoders with the straightforwardness of supervised learning, to obtain state-of-

the-art performance.
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3 | Methodology and development

3.1 Overview

In order to provide a complete analysis and show the effectiveness of the architecture, I

tried to reduce to the minimum the number of external variables. Therefore, instead of

focusing on Emotion Recognition, a problem in which numerous factors can determine

the validity of the results, I developed a collection of datasets, derived from the

dSprites dataset, on which I performed a series of synthetic benchmarks, showing

how all the observations made have a parallel and direct application to the ERC

problem. Considering, especially, the complexity of the model developed by Sha

[30], which employs a multi-target loss function, I tried to analyze each component

independently, highlighting its role in producing the final result. Sha’s architecture

is an enhancement of an encoder-decoder structure, which works by introducing an

intermediate sampling operation in the bottleneck layer. I decided to build upon

β−VAE [12], but any similar framework can be experimented with (e.g., β−TCVAE

[7] or Transformer-based models, by relying on the [CLS ] token [8]). β−VAE has the

advantage that the disentanglement it produces is determined exclusively by the β

factor (and by the choice of the prior, which is, however, always assumed to be the

isotropic unit Gaussian). Consequently, by experimenting with different β values in

Sha’s multi-target loss function, it is possible to understand the impact of the new

architecture, compared to the standard β−VAE.
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Figure 3.1: dSprites dataset, latent variable traversal. β = 10.0, hdim = 6

As previously mentioned, different values of β determine different levels of dis-

entanglement, with a clear trade-off with the reconstruction loss. In order to show

β−VAE’s capability, I trained a model with β = 10.0 and hdim = 6 (i.e., the number

of dimensions of the latent representation) on the dSprites dataset. Each image in

the dataset is generated based on five generative factors: shape, cx, cy, scale, and

rotation; by performing a latent traversal, it can be seen how Higgin’s architecture is

able to isolate all of them (with rotation requiring two units probably due to its peri-

odic nature). However, there is no established order in which the factors appear and

any permutation can be randomly learnt by the model, representing a valid encoding

of the input images. It is the simplicity of the problem that allows for a direct iden-

tification of the feature affected by each latent dimension; in a real world scenario, it

may not be as straightforward and, instead, entirely subjective. Nevertheless, for the

scope of this work, latent traversals are sufficient, as novel metrics will be introduced.

β Disentanglement
0.1 0.511
1 0.663
3 0.747
5 0.763
10 0.974
15 1.000

Table 3.1: Disentanglement score using different values of β, hdim = 6.
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Finally, by measuring the disentanglement score suggested by Higgin, we can re-

port that, in order to obtain perfect disentanglement, high values of β (e.g. β = 10.0

or β = 15.0) are required (Table 3.1). The numbers reported in the table represent

the accuracy with which a simple classification network is able to identify each dis-

entangled factor: 1.0 means perfect disentanglement, while values below 0.3 basically

represent a completely entangled embedding, with the model randomly guessing.

However, I will show how, using the proposed architecture, lower values of β can

be used to obtain valid results, demonstrating the efficacy of the newly developed

method.

3.2 Datasets

The work done within this project can be applied to any domain where there is a gap

between categorical annotations and continuous underlying values. It was initially

developed to propose a solution to the ERC’s data sparsity problem. However, in

order to focus entirely on the properties of the developed architecture, I opted to

study a less complex scenario, based on a widely known problem setting.

dSprites is a dataset composed by N = 737280 square images of 64 by 64 pixels

[19]. As mentioned previously, each image is determined by five factors, that can

assume different values:

1. shape: square, ellipse, or heart;

2. scale: 6 values in [0.5, 1];

3. rotation: 40 values in [0, 2π);

4. cx: 32 values in [0, 1], corresponding to 32 positions in the range (0, 64) pixels;

5. cy: 32 values in [0, 1], corresponding to 32 positions in the range (0, 64) pixels.
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Each item in the dataset is therefore a labelled tuple (image, factors), making it

easy to retrieve, given a picture, its generative factors, in order to compare them

with the disentangled values obtained by a model. However, since we are interested

into working with categorical annotations, I derived three main datasets from the

original dSprites one, in which I replaced some of the real value factors, in particular

cx and cy, with discrete categories. I, then, defined three different categorical systems

and labelled each data point according to them. We have, therefore, the following

datasets:

• dSprites+cAP (categories with Average Precision): cx and cy are labelled

according to the ranges [0, 23], [24, 39], [40, 63], respectively left-ap, center-ap,

right-ap and top-ap, middle-ap, bottom-ap. We have three categories on each

dimension that represent a wide range of values;

• dSprites+cHP (categories with High Precision): cx and cy are labelled accord-

ing to the ranges [0, 10], [11, 25], [26, 37], [38, 52], [53, 63], respectively far-left-

hp, left-hp, center-hp, right-hp, far-right-hp and far-top-hp, top-hp, middle-hp,

bottom-hp, far-bottom-hp. Therefore we have five categories on each dimension

that represent narrower range of values;

• dSprites+cUP (categories with Unbalanced Precision): cx and cy are labelled

according to the ranges [0, 9], [10, 19], [20, 27], [28, 41], [42, 63], respectively far-

left-up, left-up, near-left-up, center-up, right-up and far-top-up, top-up, near-

top-up, middle-up, bottom-up. Therefore we have five categories on each dimen-

sion, but they represent uneven ranges of values.

Slight variations of these datasets will be employed to obtain some of the results;

since they are linked to specific experiments, they will be described in their respective

sections.
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Figure 3.2: Sample image labelled according to two different categorical models: AP
and HP.

Each dataset is generated by selecting a shape and sampling a subset of the orig-

inal dSprites objects of that type (e.g. dSprites+cAP is generated with 80% of the

ellipses). Subsequently each element’s cx and cy coordinates are replaced with the

labels describing the ranges they fall in, given the target categorical model. The

image shown in figure 3.2, for example, would be labelled as right by both AP and

HP systems. In this way, I generate several datasets whose data points belong to the

same domain (i.e., black and white pictures each containing a single shape) but are

not completely identical, as they have different shapes. Furthermore they are labelled

according to different models and, therefore, there is no default way to merge them.

However, we know that, although the categories used are not compatible, they are

generated by the true generative factors cx and cy. This is exactly the problem setting

previously defined. Thus, we aim to recover, from the categorical labels, the original

cx and cy, map them into the same space, and merge all datasets together. Assuming

that the distributions underlying each label are Gaussian, we want to compute each

mean and standard deviation in order to project them into the latent space. Given the

desired smoothness property, distributions of categories that represent objects close
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Figure 3.3: Example of successfully displaced labels into the latent space.

Figure 3.4: AP and HP labels projected into the same continuous space.

to each other in the feature space (e.g., far-left and left) should be close in the latent

space as well, and present a smooth transition from one to another. In figure 3.3, for

example, the labels used for the cx axis in the AP dataset are correctly displaced into

the latent space, in this case the interval [-1, 1]. By repeating the process for all the

datasets, we obtain a clear representation of each label’s meaning in the same latent

space. Thus, it is possible to relate and merge them (as they share the same metric

space, Fig. 3.4), combining the different datasets into a single one.

Each generated dataset, however, contains samples that, despite having their cen-
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Figure 3.5: Example of shapes completely belonging to one interval (left) and to
multiple ones (right).

ter positioned in a specific label range, may belong to multiple ones, if we consider

the full size of the shape (Fig. 3.5). A similar situation can happen when dealing

with Emotion Recognition, as some utterances may have blurrier emotional nuances,

compared to others. As a consequence, due to the subjectivity of the annotation

process, mislabelling is a possibility. Luckily, by working in a continuous space with

strong structural properties (i.e., ordered distributions and smoothness transitions be-

tween them), it is easy to represent uncertainty, by projecting the samples to points

where multiple distributions overlap. The framework proposed within this work is

able to perform all the required inference autonomously, as it will be shown through

experimental observations.

3.3 Architecture

I have now highlighted all the background knowledge and related work that will let

us define the method developed to solve the problem of projecting different categor-

ical labels into the same continuous space, in order to compare them and be able

to merge together multiple datasets. This would result in an architecture able to

represent each category’s true generative factors; for ERC, this means decomposing
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each emotion in its three components: Valence, Arousal, and Dominance. The ideal

solution, therefore, would produce, as a side effect, a model achieving perfect style

disentanglement, capable of generating latent vectors that separate the emotional

nuances from the content of each utterance. The existing methods propose effective

ways to derive the factors v, but fail to independently exploit categorical annotations,

as dimensional information is always required, either as a priori knowledge to embed

into the model, or as training data. Furthermore, they rely on strong assumptions on

the latent space’s structure. I tried, therefore, to focus on the disentanglement itself,

as a means to reach the desired goal, instead of being a secondary result. This allows

to develop techniques that are applicable to any field, and do not rely on any premise.

Autoencoders, as a general purpose method, seem like a good fit; the problem is how

to incorporate exclusively categorical knowledge to disentangle v in the desired way.

Sha and Lukasiewicz recently published an architecture, based on an enhanced

VAE, that is capable to achieve targeted multi-type disentanglement (Fig. 3.6) [30];

I will refer to it as MTD-VAE. They consider each embedding h as a vector that can

be split into content c and multiple target style types s1, s2, ..., sn, which are "classes

that represents a specific feature of text or an image, e.g., sentiment, tense, or face

direction". The model, by employing multiple classification networks (one for each

style type) applied on the bottleneck layer, is able to link each possible value for

each style type, called style values, to a specific volume of the latent space, defin-

ing a probability distribution over it. Thus, it is capable of projecting categorical

annotated points in a continuous dimensional space. However, by introducing the

intermediate classification network, which relies on a random sampling operation, the

architecture breaks the continuous flow of information between the encoder and the

decoder. Consequently, the smoothness property of variational autoencoders is lost

and, although each distribution correctly represents its features locally, the latent

space lacks global structure: each category is independent from the others and the
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Figure 3.6: Multi-type disentanglement VAE. The yellow box and the zig-zag arrows
describe and represent the intermediate sampling process. Taken from "Multi-type
Disentanglement without Adversarial Training" [30].

model is not able to correctly interpolate intermediate samples (exactly as it happens

in the plain autoencoder architecture).

By introducing some architectural changes, I aim to recover this fundamental

property: the new method should be able to learn the order and positions of the

labels’ projections in the latent space. I will now describe in detail the original model

and its improved version, used to obtain all the results in this work. I will show

that it is possible to obtain targeted disentanglement (i.e., disentangle only a specific

subsets of the true generative factors v) by augmenting an unsupervised architecture

and using exclusively categorically annotated data.
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3.3.1 Multi-Type Disentanglement Variational AutoEncoder

As a baseline for the experimental results, the MTD-VAE architecture is used. For

the encoder and decoder components, I employed the ones described by Higgins, in

the original β−VAE paper [12]. They consist of a combination of convolutional and

fully connected layers; a hidden dimension of 20 has been used for the bottleneck layer

across all the reported experiments (however, multiple values has been tested without

noticeable differences). The goal of Sha’s architecture is to introduce a layer capable

of disentangling specific target styles from the content; therefore, the embedding

generated by the encoder (after the sampling operation defined by the variational

approach) is split into several components: a content vector c, which is directly fed

into the decoder, and several style vectors, one for each of the n target style types.

Each of them, instead, undergoes a further resampling operation, which guarantees

the multi-type disentanglement. Consider a single style type vector si (generated

by the encoder from a sample (x, y1, ..., yn)), its possible assigned categories (i.e., the

labels of the chosen categorical model) need to be projected into the latent space. The

model, therefore, defines a multi-variate Gaussian for each of them, representing the

distribution of the corresponding generative factors vi, p(vi|yi). Instead of directly

feeding si to the decoder, a new value s′i is sampled from the distribution representing

the label yi. In this way, it is guaranteed that the decoder receives a value representing

the correct label and, by backpropagating the reconstruction error of the autoencoder,

that the chosen distribution actually encodes the label’s features. At the same time,

we need to make sure that the style vector si appears like sampled from that same

distribution or, in other words, that the encoder produces values correctly encoding

the object’s features, according to the defined style value’s probability distributions.

The key idea is to separate each label’s projection from the others, in order to have

a clearly different encoding for each possible style value. This behaviour is obtained
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by means of a classification network attached to the architecture after the sampling

operation that forces each distribution away from the others (as this allows to have

a better classification accuracy). The approach, combined with other loss function

components, generates a disentangled representation, where the content c and each

style type si are clearly independent from each other. Formally, the model performs

the following steps:

1. Encoding: the sample point x is processed by the encoder, generating a mean

and standard deviation for each style type and content’s dimension. Then the

latent vector ĥ is sampled from obtained multi-variate Gaussian;

2. Resampling: ĥ is split into c and s1, ..., sn. c is fed to the decoder while

each si is discarded. Instead a new s′i is sampled from its style type’s correct

distribution, according to the style label yi;

3. Decoding: the latent vector h, defined by c, s′1, ..., s′n, is normally decoded

into x̂.

The original s1, ..., sn, despite not being used in the reconstruction phase, are nec-

essary to compute the loss function, in order guide the encoder to produce the right

values. The loss function is composed by the following components:

• VAE Loss: computed from the reconstruction loss (e.g., using the Binary Cross

Entropy loss between the pixels of the original and reconstructed image) and

the KL divergence according to the canonical formulation. As the priors are all

assumed to be Gaussian, it can be easily computed;

• Multi-type Disentanglement Loss: computed to enforce each style vector

to encode a different style type, by minimizing the mutual information between

42



each other. Sha proved that this is equal to utilizing the following loss function:

Lm =
n∑
i

n∑
j,j 6=i

[H(p(ti|si))−H(p(tj|si))−H(p(tj|s′i))] (3.1)

where H represents the entropy function.

and for each style type i ∈ {1, ..., n}:

• Style Attachment Loss: computed to make the encoded value appear as

sampled from the correct distribution. Given a style vector s and its correct style

value t, we want to maximize the probability of s belonging to the distribution

of t, p(t|s). Assuming that all probability distributions are Gaussian, we have

by Bayes’ rule:

p(t|s) =
N (s|µt,Σt)p(t)

p(s)
=

N (s|µt,Σt)p(t)∑
t′(N (s|µt′ ,Σt′)p(t′))

(3.2)

from which we can compute the Negative Log Likelihood (NLL) loss:

Lal = − log(p(t|s)) (3.3)

• Style Classification Loss: required to have each distribution map to the

correct corresponding style value. Therefore we want to maximize the following

probability:

p(t|s′) =
N (s′|µt,Σt)∑
t′ N (s′|µt′ ,Σt′)

(3.4)

and minimize the corresponding NLL loss function:

Lcl = − 1

n

n∑
j=1

log(p(t|s′j)) (3.5)

• Style-Content Disentanglement Loss: used to guarantee that the content
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vector does not contain any information about the style. To achieve this, Sha

proposes to minimize the mutual information between the content vector and

each style vector, before and after the sampling operation, namely I(c, s) and

I(c, t). To minimize I(c, t), the author shows that

I(c, t) ≤ Ex[
∑
t′

p(t′)DKL(p(c|t,x)||p(x|t′,x))] (3.6)

In order for it to be computable, a new distribution Nc(µ′t,Σ′t) is defined to

model p(c|t,x), and all the content vectors with label t are forced to obey it,

defining the NLL loss function

Lpl = − log(Nc(c|µ′t,Σ′t)) (3.7)

Therefore, the final style-content disentanglement loss function is as follows.

Lsc = Ex[
∑
t′

p(t′)DKL(c|t,x||x|t′,x)] + λplLpl (3.8)

where λpl is a model’s hyper-parameter.

Summing together all these components, each multiplied by its own weighting factor

(i.e. model’s hyperparameters), we have the final loss function used by the model:

L = Lβ−V AE + λalL̄al + λclL̄cl + λscL̄sc + λmLm (3.9)

where L̄ represents the sum over all style types of the corresponding loss function.

The model successfully disentangles each style type, separating each style value’s

distributions in the latent space. It is therefore easy to perform what is called style

shift: as the content is unrelated to each style vector, it is possible to programmatically
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change only specific features of a sample, by replacing the corresponding style vectors

with new values sampled from the new target distribution. The new vector will encode

the data required to reconstruct a modified data point through the decoder. However,

despite the model ability to encode each different style, there is no information stored

about samples presenting intermediate features. This is due to the discontinuity

introduced by the resampling step: if, in fact, we assume that the encoder learns

to correctly encode them, then sampling a new vector from a single distribution

completely deletes any nuances in the embedding. For the MTD-VAE architecture,

therefore, both samples in figure 3.5, for example, will be encoded exactly with the

same embedding, since the only difference between them is in the cx coordinate but

it’s not captured by the coarse categorical model. We want to be able, however, to

represent it. This would enable the model to understand the relationships between

multiple style values. In this case, for example, learning that center and right share

some features and are close in space, while left and right are completely unrelated.

3.3.2 Multi-Type Continuous Disentanglement Variational Au-

toEncoder: MTCD-VAE

The goal of this project is to provide a tool capable of producing a merged dataset

using data labelled according to different categorical models. The ability to represent

intermediate samples and understand the relationships between different categories

is, therefore, fundamental. In this section, I illustrate the final proposed architecture

that, through multiple improvements, overcomes the issues of the original model.

Chapter 4 will illustrate the obtained results. Furthermore, in Chapter 5, novel be-

haviours and further interesting results are presented. They are beyond the original

scope of this work, but could represent a relevant advance towards better AI explain-

ability.

45



The global MTCD-VAE structure remains unchanged: it consists of an encoder,

a decoder, and a bottleneck component, in which a resampling operation happens for

each of the style vectors. However, the way it is performed is different. We will now

analyze a single-type scenario to facilitate the explanation; however, the architecture

is designed to handle multi-type disentanglement by applying the following processes

to each style vector si.

Consider a sample (x, y) (where y is the style value annotated label) and its gen-

erated embedding h, split into content vector c and a single style vector s, whose

possible m style values are {t1, t2, ..., tm}. As described above, a probability distribu-

tion Ni is associated to each of them. In the MTD-VAE architecture, s is entirely

replaced by a new vector s′ sampled from Nty . However, this discards any extra

information (i.e., detailed values other than the discrete category) stored in s. In the

new architecture, therefore, s′MTCD is generated in a way that preserves it: a vector

ŝi is sampled from each distribution Ni and their sum, weighted by each probability

p(ti|s), is summed to the original s′MTD. Formally:

s′MTCD = s′MTD +
m∑
i=1

ŝi · p(ti|s) (3.10)

In this way, not only I am capturing more of the nuances stored in s, as its value

is used to compute the importance of each style value and, therefore, can represent

intermediate values (by adjusting the probability weights accordingly), but I am also

introducing an explicit relationship between each distribution, forcing them to "in-

teract". The original s′MTD is preserved into the sum as it helps the distributions

to represent different values by spreading across the latent space, as in the original

MTD formulation.

As it will be shown in the result chapter, MTCD-VAE is able to project each

style value’s distribution in an ordered and continuous manner into the latent space,
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allowing to understand the range of true generative factors v linked to each category.

Therefore, given a sample (x, y), we can easily compute the probability distribution

p(v|x, y) and, as the distributions used by the model are not implicitly stored into

the weights of each neuron, but explicitly represented by their means and variances,

it is also easily to obtain an approximation for p(v|y). It is therefore possible to

achieve the original goal of this project (i.e., merging different datasets), by adding a

masking layer, that let the model select which categorical model is being used and,

therefore, which family of distributions to use for each style type. In fact, despite each

categorical model uses an independent set of distributions, the encoder and decoder

remain fixed across all the training steps and, therefore, all the models are projected

into the same space, successfully merging together.

The main property of neural networks is their capability to generalize to new

unseen inputs. So, it would be interesting for the model to work with completely

unlabelled samples and, therefore, to be able to compute p(v|x), removing the de-

pendency from the label y. Through multiple experiments, I discovered that it is

sufficient to slowly remove the influence of the vector s′MTD while computing s′MTCD,

as its importance is relevant only until each style value’s distribution has not reached

a stable state into the latent space. After this happens, the model can safely learn to

generalize without the use of a training label. The final formula to compute s′MTCD

is therefore

s′MTCD = α · s′MTD +
m∑
i=1

ŝi · p(ti|s) (3.11)

where α is an hyper-parameter that decreases over time (Fig. 3.7).

Since we are interested into analyzing the relationships between the different cat-

egories, once projected into the latent space V , I decided to restrict each style vector

si to be one dimensional (compared to the original architecture’s formulation that

allows for multi-dimensional representations). This introduced a clear notion of order
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Figure 3.7: Value of α at each epoch.

among the distributions and made the analysis easier. However, it is true that a

category could be identified by a specific combination of generative factors vi1 , ..., vik ,

and a single dimension may not be able to represent it. Therefore, in order to enable

the model to encode all the required information, I allow multiple mono-dimensional

style vectors sij, j ∈ {1, ..., k} to be associated with the same style type. Ideally, each

one of them will learn to model each factor vij . As a consequence, I had to modify

the Style Classification Loss function: the classification network needs to be fed with

the information from each sij, instead of a single si. Therefore, I updated equation

3.2 to compute p(t|s1, s2, ..., sk) (remembering that we are omitting the index i). As

we will see in Chapter 5, this new configuration allows for even more inference on the

structure of the hidden space V , given a categorical model.

The full diagram of the final architecture can be found in Appendix B.
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4 | Results

In order to evaluate the performances of the developed model, it is important to

clearly understand what is the purpose it has been built for. Even if the architecture

is based on an autoencoder, the reconstructed sample x̂ is of little to no importance:

the focus is on the structure of the generated embedding h. As a consequence, I chose

to employ the simple β-VAE architecture and not any of its improved versions, like

β-TCVAE, that may greatly improve the reconstruction quality. Furthermore, we are

not only interested in the value of the latent units of h, but also in the parameters

of the neural network that define each category’s distributions. If, on one hand,

they are explicit and not hidden inside the neurons weights and biases, on the other

hand, there is no canonical way to measure how "good" they are and, therefore, the

performance of the model itself. In fact, we are not looking at any reconstruction loss,

classification accuracy, or direct disentanglement metric. Instead, since we want to

project a categorical model into a continuous space V , we are interested, as defined

in the problem statement, in the labels’ consistency. It remains to be defined which

metrics are necessary to evaluate it.

The datasets created for the experiments focus on the cx and cy coordinates of

each shape, replacing their real values with a categorical label. Therefore, despite the

model not having access to them during training, we can compare the distributions’

parameters to check if they match the original cx and cy ranges for each category.

Since the family chosen to approximate the true distributions p(v|x,y) (where y
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is a set of categorical labels, one for each style type, given to a sample x) is N

(i.e., Gaussian distributions), it is straightforward. For each generative factor vi, we

can, in fact, consider its average value for the samples under each label’s value and

compare it with its corresponding distribution’s mean. In particular, I will measure

the correlation between each label’s associated average value in the continuous space

and its distribution’s mean. In this way, I am able to evaluate how each category

is projected into V and if their order is consistent with the true generative factors’

order. Consider, for example, the dataset dSprites+cAP and the cx coordinate. Each

sample can be classified as one of the three categories left-ap, center-ap, right-ap,

whose intervals are, respectively, [0, 23], [24, 39], and [40, 63] pixels. Then, the

average values for each interval are 11.5, 31.5, and 51.5. Therefore, I will measure

the correlation between the ordered vector (11.5, 31.5, 51.5) and the ordered vector

(µleft−ap, µcenter−ap, µright−ap). The closer the value is to 1, the better the projection

in the latent space is.

Furthermore, since we are interested into obtaining a smooth transition from one

category to another, I want to be sure that the distribution are not isolated in the

space but, instead, overlap nicely to enable the model to represent intermediate fea-

tures. Since I am working with one-dimensional distributions, it can be done through

visual inspection. However, no common software was found that allows for the vi-

sualization of model parameters as probability distributions, especially when dealing

with many of them in the same space (and therefore graph). Consequently a tool has

been developed to show, in real time, all the loss values used by the model (as done

by software like Google’s TensorBoard1) and, in particular, visualize each category’s

distributions. This software is publicly available and will be further improved with

explainability of neural networks as core concept in mind. An example of the board

can be seen in figure 4.1.
1https://github.com/tensorflow/tensorboard
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Figure 4.1: Screenshot of the developed visualization software. xaxis and yaxis graphs
report the distributions of each corresponding category.

Other analysis tools and metrics will be explained in relation to their correspond-

ing experiments. They will mostly consist of the usual performance measures used

within an autoencoder with disentanglement framework, such as latent traversals.

4.1 Projection of categorical data to a dimensional

model

The main result we are interested in is the projection of a categorical label to the

continuous space identified by a one-dimensional style vector s1. I, firstly, present

the result obtained using the standard MTD-VAE architecture and then compare it

with the new MTCD-VAE. I focus on a single style type scenario, where I try to

project the labels classifying the cx value in the dSprites+cAP dataset: left, center,

right. As we can see in figure 4.2, the original model MTD-VAE performs optimally,

reaching a correlation of almost 1.0. However, as the model treats each distribution
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Figure 4.2: MTD-VAE: distributions corresponding to the left-ap, center-ap, right-ap
labels. The x-axis represents the continuous value in the latent space V

independently, we can observe that there is no considerable overlapping and the re-

sulting space does not allow for smooth transition from one style value to another.

The encoded values for the cx are all clustered around the three means −2.8, −1.0,

and 0.6. Nevertheless, MTD-VAE already produces satisfactory results, proving that

the unsupervised learning approach can enhance the data provided to the supervised

classification network, establishing some kind of order relationship between the dis-

tributions. It has to be noticed, however, that we are working with a relatively simple

scenario, with only three possible categories. Given the random initialization of each

of the model’s parameters, it is with high probability that it can start the learning

phase from a favorable condition. In fact, we are measuring the correlation between

the labels’ true average and the model distributions’ means; any affine transforma-

tion of the original factors’ space is, therefore, valid and would result in a perfect

correlation of 1.0. So, it is possible that the distributions in the reported graphs

appear in reversed order, have a different scale, or are translated compared to the

true generative values.

If we consider the dSprites+cHP dataset, instead, it is rather difficult that a ran-

dom initialization of the distributions’ means correspond to an affine transformation

53



Figure 4.3: MTD-VAE: distributions corresponding to the labels in the dSprites+cHP
dataset. They do not appear in the correct order, nor have a consistent standard
deviation.

Figure 4.4: MTD-VAE: correlation between the distributions’ means and labels’ true
averages over the training epochs.
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of the labels’ true average values (or to a state in which it is immediate to reach that

configuration). As a consequence, we can observe that MTD-VAE fails to correctly

project the categories (Fig. 4.3). Despite being able to separate each style value from

the others, disentangling cx from the other factors in the embedding h, it lacks any

property of order or smoothness (i.e., the distributions are not in the correct order

and do not overlap) and manage to achieve a correlation of only 0.678 (Fig. 4.4).

Furthermore, we can notice that this result is not even stable, as the value decreases

after having peaked during the first training epochs. From this, we can deduce that

the model is not actively optimizing for this objective and, instead, is only a side

effect of the disentanglement task.

Figure 4.5: MTCD-VAE: correlation between the distributions’ means and labels’
true averages over the training epochs.

MTCD-VAE is built around the idea of obtaining perfect correlation and, as the-

oretically hypothesized, it is able to obtain perfect results with each of the three used

datasets, always reaching a stable correlation of almost 1.0 (Fig. 4.5). Having run

multiple simulations, I can confirm that the result is not due to a favorable random

initialization of the distributions’ parameters. Instead, thanks to the online and in-

teractive nature of the developed visualization tool, it was possible to observe the

model learning and sorting the labels into a perfectly correlated sequence, starting
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Figure 4.6: MTCD-VAE: distributions corresponding to the labels in the
dSprites+cHP dataset.

Label Distribution range Space % Label range True %
far-left-hp [−2.4,−1.45] 21.6% [0, 10] 17.2%
left-hp [−1.45,−0.72] 16.6% [11, 25] 23.4%

center-hp [−0.72, 0.11] 18.9% [26, 37] 18.8%
right-hp [0.11, 0.98] 19.8% [38, 52] 23.4%

far-right-hp [0.98, 2.0] 23.3% [53, 63] 17.2%

Table 4.1: MTCD-VAE: ranges of value associated to each distribution and label (the
latent space is clipped according to the distributions’ standard deviation.)

from a totally wrong and mixed initial order. Therefore, the model is able to con-

sistently produce the desired result. In figure 4.6, for example, we can observe that

the sequence of distributions is correctly ordered according to the associated range of

values of their corresponding label, despite the model never having access to that in-

formation during the training phase. There is also a clear smooth transition from one

distribution to another, allowing to represent nuances of each style value. Further-

more, if we consider the maximum likelihood estimate to assign to each continuous

value a label, we have a clear correspondence between the ranges defined by the dis-

tributions and the true labels’ ranges (Tab. 4.1). Analogous results were obtained on

the dSprites+cAP and dSprites+cUP datasets.
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Figure 4.7: MTCD-VAE: multi-type disentanglement and simultaneous categories
projection on both the x (bottom) and y (top) axis.
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Figure 4.8: Latent traversal on the cy unit (dSprites+cAP dataset).

4.1.1 The multi-type case

Since the model was originally designed to handle multi-type disentanglement, I tried

to project both cx and cy labels. The result are analogous: we can clearly see the

correct disposition of each distribution, according to its associated label’s range of

values, and obtain a correlation of 1.0 on both the used dimensions (Fig. 4.7). The

model is, therefore, able to perform simultaneously both disentanglement of multiple

style types and continuous projection of categorical models into a dimensional one.

However, it may be worth noticing that, until now, I have been working with one-

dimensional labels (i.e., labels whose value is determined by a single generative factor

v) and I have embedded this a priori knowledge inside our architecture, by using a

single one-dimensional style vector to encode each style type. Therefore, what it has

been shown is that the model is able to correctly disentangle the generative factors

and link them to their, already disentangled, categorical models. In other words, the

model is able to learn to associate single generative factors to their label, but needs

to know that the labels require exactly a single dimension to be represented. As we

will see in further sections, this is not a strict requirement.

4.1.2 Further analysis

In order to further analyze the stability of the model, I performed some of the tests

normally used to assert the performance of autoencoders. However, considering the

results obtained already, we are capable of computing p(v|y) (i.e., the generative fac-

tors associated to each label y) by simply extracting from the model the corresponding

distribution’s parameters. Nevertheless, we may still be interested into automatically
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computing the fine-grained v value for each sample (x, y), p(v|x, y). Therefore, we

analyzed the latent traversals on the cx and cy latent units. As we can see from

figure 4.8 the latent unit is correctly representing the cy coordinate. However, there

is not a high diversity in the produced images and it is possible to identify the three

categorical clusters used in the dSprites+cAP dataset. This is due to the fact that

the model is still relying heavily on the input sample’s label to generate the output.

As it will be shown, by removing the dependency it is possible to achieve a smoother

transition from one category to the next. Nevertheless, this shows that the model is

able to compute p(v|x, y) (in the example, in particular, p(cx, |x, y)).

Furthermore, if we focus on the accuracy of the classification network attached to

the style vectors, we can observe that it is straightforward to fine-tune the model to

obtain values close to 100% as the distributions are easily separable as shown above,

trading-off with the reconstruction loss. The trade-off is due to the intermediate sam-

ples that do not clearly belong to a specific category: if I prioritize the classification

loss, it is easier to correctly classify them, since the transition area between distribu-

tions is small, as they are more clearly separated into the latent space. On the other

hand, if we are interested in a better reconstruction loss, I need to preserve the spe-

cific features of each sample and, therefore, allow for a greater overlapping between

the distributions (to guarantee smoother transitions), which causes a degradation in

the classification performance (Fig. 4.9).

4.2 Merging categorical models

Given all the previous results, it is now possible to merge different categorical models,

C1, ...CN in the same dimensional one. In order to achieve this, it is necessary to train

a MTCD-VAE model with samples belonging to each of the D1, ..., DN datasets.

The architecture automatically switches to the correct set of labels (and therefore
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Figure 4.9: MTCD-VAE: comparison between latent spaces when prioritizing classi-
fication (top) or reconstruction (bottom) loss.
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Figure 4.10: MTCD-VAE: dSprites+cAP and dSprites+cHP merged together. In red
the ordered labels far-left-hp, left-hp, center-hp, right-hp, far-right-hp; in blue left-ap,
center-ap, right-ap.

distributions) to use for each of the training samples by means of the masking layer.

However, since the encoder and decoder are shared among the categorical models,

these are projected in the same vector space V and, consequently, share the same

representation of the generative factors v. Using the embedding’s values cx and cy

obtained from each sample (x, y) ∈
⋃
i∈{1,...,N}Di, I can generate a single dataset

D, employing a single unified encoding and consistent with all the previous models.

An example of the result displacement of the distributions in the space V among

one dimension can be seen in figure 4.10, where the datasets dSprites+cAP and

dSprites+cHP were used (in order to emphasize the different categorical models, a

different visualization software was employed). As expected, the labels are correctly

sorted as far-left-hp, left-ap, left-hp, center-hp/center-ap, right-hp, right-ap, and far-

right-hp; the two center labels are completely overlapping, as they represent the

same data in both datasets. Furthermore, on each side (i.e., left and right) the ap

distribution is between the two hp ones and covers a wider range (i.e., has an higher

standard deviation), reflecting the wider ap label’s range and their in-between mean.
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5 | Further Results

5.1 Continuous disentanglement

In the previous chapter, I showed how MTCD-VAE is able to correctly approximate

p(v|t) and p(v|x, y), where t is a style value, x a sample and y the label associated

to it. However, as mentioned earlier, in order to have a model able to generalize to

new unseen data-points, it is required to remove the dependency on the label y and,

therefore, to be able to compute p(v|x). By gradually reducing the value of α over

the training epochs and balancing the different loss weights λ·, the model is able to

produce a latent representation h that depends entirely on x and on the previously

learned distributions associated to each style type and value. As it can be observed

in figure 5.2, the distributions’ displacement remains unchanged and the correlation

stable over time 5.1.

Furthermore, I now have full control over the importance of the categorical infor-

mation, by adjusting the weight of the classification loss, λcl. When reducing it, there

is no learning pressure to create clusters of data-points to maximize the classification

accuracy and instead, the embeddings can spread evenly over all the latent space

V , obtaining a smooth transition between the categories and enabling the encoder

to produce the true generative factors’ values, cx and cy. By analyzing the values

directly taken from the latent h, we can indeed observe this behaviour: figure 5.3

shows a smooth curve generated from the encoded value cx, given a sequence of x
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Figure 5.1: MTCD-VAE: final distributions’ placement when training for label inde-
pendence.

Figure 5.2: MTCD-VAE: correlation between labels and distributions’ means when
training for label independence.
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samples ordered along the x coordinate. The peculiar shape is given by the choice of

the encoder’s activation function, tanh, that, unfortunately, squeezes all the sample

points, whose shape is close to the image border, to the same value, loosing accuracy.

In all the reported graphs, therefore, the displayed interval goes from 25% to 75% of

the ordered available coordinate values.

By applying the inverse transformation, i.e., the atanh function, and comparing

the result with the true cx values, we get, after normalization, an almost perfect

correlation between the two sequences of points (Fig. 5.4). This shows that the

model is completely capable of disentangling the coordinate values of each data-

point into the target latent units, becoming independent from the original labels and,

rather, providing a greater encoding/reconstruction accuracy that the one provided

by exclusively relying on a categorical model. Therefore, instead of disentangling a

feature into fixed unrelated categories, it is possible to obtain latent units that encode

independent and continuous sequences of values.

Figure 5.3: MTCD-VAE: cx coordinates of a sequence of ordered data-points, obtained
from the corresponding latent unit in the embedding h
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Figure 5.4: MTCD-VAE: Transformed and normalized sequence of the encoded cx
shows almost perfect correlation with the true original cx value.

Figure 5.5: Latent traversal on the cy unit with label independence.

Through a latent traversal, finally, it can be clearly seen how the information

representable by the model goes well beyond the three categories available for each

style type in the dSprites+cAP dataset, used to train the model. In fact, each latent

value corresponds to a unique decoded image, generating a smooth vertical transition

(Fig. 5.5). Thus, the model is able to represent the fine-grained p(v|x) values.

5.2 Multi-type label disentanglement

All the results presented until now have been produced by using one-dimensional

labels, that is, labels that require a single real value to be represented (e.g., the set of
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labels {left-ap, center-ap, right-ap} only requires the value cx to be defined), and we

have embedded this a priori knowledge into the model, by utilizing and observing only

a single dimension for each style type. However, most of the information collected

from the real world is not in the form of already disentangled categorical values and,

actually, is quite a challenge to even discover how many does a category encode. In

ERC, for example, it is theorized that each emotion can be represented by three values

(i.e., Valence, Arousal, and Dominance), and, normally, this number is used as an

hyper-parameter or to define the model, as it happens in the architecture proposed

by Park [24]. It would be desirable, however, to have the model itself learn the

value, to allow for better flexibility and representation capabilities. In order to test

the performance of MTCD-VAE on this new task, I created a new dataset, derived

from dSprites+cAP, called dSprites+cAPE(ntangled). Instead of providing a label for

each coordinate, a single one was assigned, chosen from the Cartesian product of the

original label sets. Therefore, each sample in dSprites+cAPE is labelled accordingly

to its cx and cy with one of the following labels: lt-ap, ct-ap, rt-ap, lm-ap, cm-ap,

rm-ap, lb-ap, cb-ap, rb-ap. As previously, the model has no access to the true values

cx and cy, nor to any information regarding the labels’ underlying ranges.

The model, in order to correctly represent each sample, needs to disentangle each

label in its generative factors. This means being able to understand how many di-

mensions k are necessary to encode a particular categorical model and linking the

right vi1 , ..., vik to them, among all the generative factors v. Figure 5.6 shows how

the nine distributions, used to represent the nine possible label values, are correctly

grouped and displaced on two dimensions by MTCD-VAE, encoding, the cx and cy

values, as expected. We can conclude, therefore, that the model is able to perform

targeted multi-type disentanglement by employing a categorical labelling system as a

guide, identifying the multi-dimensional distributions underlying each label’s value.

Furthermore, if we try to encode a n-dimensional label with (n+ 1) dimensions, the
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Figure 5.6: MTCD-VAE: disentanglement of a single categorical model among two
dimensions; different shades of the same tonality represent categories with the same
cy value, while brightness is shared among categories with the same cx.
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Figure 5.7: MTCD-VAE: trying to disentangle a label within more latent units than
necessary results in an unused one.

model is able to recognize the unnecessary style vector, and only utilize n by storing

no information in the last one. This can be deduced by the displacement of the dis-

tributions in figure 5.7. The model has to disentangle the cx value and requires only

a single dimension to do so; thus, the distributions on other axis do not encode any

value, as they are all identical and, therefore, producing only noise. As a consequence,

the model is, not only, able to disentangle a label in its true generative factors, but

also to discover how many factors are necessary, fully understanding the structure of

V .
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6 | Conclusions

Multi-Type Continuous Disentanglement Variational AutoEncoder is an architecture

able of projecting multiple categorical models into a single dimensional space, by

employing the unsupervised learning capabilities of autoencoders combined with the

guide provided by coarsely annotated categorical data. I have shown, through the

use of synthetic datasets, based on the dSprites one (commonly used to evaluate

disentanglement performance), how disentanglement can help not only in obtaining

independent latent units, each representing a particular categorical input feature.

Instead, when applied to the architecture’s weights, it can provide multiple insights

on the structure of the domain space we are currently working in. It is possible, in fact,

to analyze the explicit distributions’ parameters used to represent each category, by

observing their displacement in the latent space. The experiments carried out show a

clear correspondence between the produced and true real values, with the distributions

displaced accordingly to an ordered smooth sequence. The shift from categorical

to dimensional models allows us to understand the true meaning of each discrete

label, which factors are related to it and how many dimensions are necessary to

encode it. As a consequence, it is easier to discover the relationships between different

categories and, therefore, between multiple categorical models, used to describe the

same phenomenon. Thus, it offers a tool capable of merging datasets created in

different times and settings, producing an unified consistent set of training input

points. In this way, I hope to provide an inspiration on how to solve the data sparsity

71



problem that affects some machine learning tasks, such as Emotion Recognition in

Conversation.

Furthermore, I consider the experiments and results of Chapter 5 of interesting

relevance under the topic of general explainability in neural networks. They show that

MTCD-VAE is able to understand what we, humans, are trying to convey and express

through categorical models. In particular, it can formalize what each single category

represents and according to which principle the data-points are clustered given the

labels, by defining the number k of necessary encoding factors and projecting each

category into the latent space V , clearly defining its relationships with the others.

On the other hand, through the analysis of the explicit distributions, we are able to

describe how the model is processing the data. With this first attempt to provide a

completely autonomous bridge between classification (based on categorical data, more

suitable to be understood by human beings) and regression (based on dimensional

data, easy to process for a computer), I hope to contribute to obtain further insights

on how neural networks internally work and, therefore, how we can improve them, in

a safe and controlled way.

6.1 Future work

The model proposed in this work has only been tested with a single category of

data, i.e., images, and on a specific task: disentangling the cx and cy coordinates.

In order to obtain more analytical results that can confirm the efficacy and perfor-

mance of MTCD-VAE in solving the defined problem statement, more tests need to

be performed on different datasets. Furthermore the architecture still offers wide pos-

sibilities for further improvements that may improve the stability and quality of the

obtained results. Finally, the produced datasets should be actually used to train a

model for specific downstream tasks to assert if the augmented training data actually
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improve the performance.

A list of key points could be the following:

• Experiment with different activation functions or methods to regularize the

encoder outputs since, as mentioned, using the default tanh function results in

a lost of accuracy near the extremes of the encoding interval. A possible idea

could be using Layer Normalization [2] or ReLU activation functions;

• Modify the network to handle textual data and experiment within the VAE

framework. The encoder and decoder need to be modified to work with se-

quences of words: LSTM layers [13] are probably the best solution, since they

are already being used in the original MTC-VAE architecture;

• Explore the results on downstream tasks of models trained with the generated

merged datasets;

• The model still requires a complex loss function, with several hyperparameters

that need to be balanced, in order to perform correctly. However, due to the

explicit nature of the distributions embedded into the model, it should be able

to self-assess its own performance and stability (e.g., by observing the distribu-

tions’ displacement and movements) and, consequently, automatically balance

its own hyperparameters to obtain better performance.

In general, this project constitutes a theoretical framework that needs to be

adapted and fine-tuned to real-world tasks and scenarios in order to completely assert

its capabilities.
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A Derivation of the ELBO loss function

Given a sample x, we aim to approximate the posterior p(h|x) of its latent represen-

tation h. To achieve this, we use a parametrised distribution qθ, modeled through a

neural network with parameters θ. Then we aim to maximize the similarity between

p and qθ; a commonly used way is to minimize the KL divergence between them.

Through a series of equations is easy to show that it is equivalent to maximizing the

ELBO.

DKL(qθ(h|x)||p(h|x)) = Ez∼qθ [logqθ(h|x)− log p(h|x)]

= Ez∼qθ [logqθ(h|x)− log p(x|h)− log p(h) + log p(x)]

= −(Ez∼qθ [log p(x|h)]−DKL(qθ(h|x)||p(h))) + log p(x)

Since p(x) it’s independent of the model’s parameters, we get the desired equivalence.

Furthermore, using the fact that the KL divergence is always greater than 0, we have:

log p(x) ≥ Ez∼qθ [log p(x|h)]−DKL(qθ(h|x)||p(h))

or, in other words, that the ELBO is, as the name suggests, a lower bound for the

log-likelihood of the data.
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B Complete diagram of the MTCD-VAE architec-

ture

Figure 1 reports the encoder structure (the decoder is analogous to it). Figure 2,

instead, shows the full diagram of the MTCD-VAE architecture. The intermediate

sampling process is repeated for each of the style vectors in order to obtain the final

embedding h.

Figure 1: MTCD-VAE: encoder architecture used for the experiments.

82



Figure 2: MTCD-VAE architecture
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